SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5.
نویسندگان
چکیده
The voltage-gated potassium (Kv) channel Kv1.5 mediates the I(Kur) repolarizing current in human atrial myocytes and regulates vascular tone in multiple peripheral vascular beds. Understanding the complex regulation of Kv1.5 function is of substantial interest because it represents a promising pharmacological target for the treatment of atrial fibrillation and hypoxic pulmonary hypertension. Herein we demonstrate that posttranslational modification of Kv1.5 by small ubiquitin-like modifier (SUMO) proteins modulates Kv1.5 function. We have identified two membrane-proximal and highly conserved cytoplasmic sequences in Kv1.5 that conform to established SUMO modification sites in transcription factors. We find that Kv1.5 interacts specifically with the SUMO-conjugating enzyme Ubc9 and is a target for modification by SUMO-1, -2, and -3 in vivo. In addition, purified recombinant Kv1.5 serves as a substrate in a minimal in vitro reconstituted SUMOylation reaction. The SUMO-specific proteases SENP2 and Ulp1 efficiently deconjugate SUMO from Kv1.5 in vivo and in vitro, and disruption of the two identified target motifs results in a loss of the major SUMO-conjugated forms of Kv1.5. In whole-cell patch-clamp electrophysiological studies, loss of Kv1.5 SUMOylation, by either disruption of the conjugation sites or expression of the SUMO protease SENP2, leads to a selective approximately 15-mV hyperpolarizing shift in the voltage dependence of steady-state inactivation. Reversible control of voltage-sensitive channels through SUMOylation constitutes a unique and likely widespread mechanism for adaptive tuning of the electrical excitability of cells.
منابع مشابه
Redox-sensitive sulfenic acid modification regulates surface expression of the cardiovascular voltage-gated potassium channel Kv1.5.
RATIONALE Kv1.5 (KCNA5) is expressed in the heart, where it underlies the I(Kur) current that controls atrial repolarization, and in the pulmonary vasculature, where it regulates vessel contractility in response to changes in oxygen tension. Atrial fibrillation and hypoxic pulmonary hypertension are characterized by downregulation of Kv1.5 protein expression, as well as with oxidative stress. F...
متن کاملDifferential sensitivity of voltage-gated potassium channels Kv1.5 and Kv1.2 to acidic pH and molecular identification of pH sensor.
Kv1.2 and Kv1.5 are two subtypes of voltage-gated potassium channels expressed in heart that are thought to contribute to phase 1 (ITO) and phase 3 (IK) components of cardiac action potential repolarization. Although the effect of decreased pH in prolonging cardiac action potentials is well documented, the molecular target of acidification has not previously been determined. We expressed Kv1.2 ...
متن کاملCellular Biology Redox-Sensitive Sulfenic Acid Modification Regulates Surface Expression of the Cardiovascular Voltage-Gated Potassium Channel Kv1.5
متن کامل
Phosphorylation-dependent and phosphorylation-independent modes of modulation of shaker family voltage-gated potassium channels by SRC family protein tyrosine kinases.
Modulation of voltage-gated potassium (Kv) channels by protein phosphorylation plays an essential role in the regulation of the membrane properties of cells. Protein-protein binding domains, such as Src homology 3 (SH3) domains, direct ion channel modulation by coupling the channels with intracellular signaling enzymes. The conventional view is that protein kinase binding to ion channels leads ...
متن کاملEffects of L-type Calcium Channel Antagonists Verapamil and Diltiazem on fKv1.4ΔN Currents in Xenopus oocytes
The goal of this study was to determine the effects of the L-type calcium channel blockers verapamil and diltiazem on the currents of voltage-gated potassium channel (fKv1.4ΔN), an N-terminal-deleted mutant of the ferret Kv1.4 potassium channel. Measurements were made using a two electrode voltage clamp technique with channels expressed stably in Xenopus oocytes. The fKv1.4ΔN currents displayed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 6 شماره
صفحات -
تاریخ انتشار 2007